关键词搜索

源码搜索 ×
×

别再写 main 方法测试了,太 Low,这才是专业 Java 测试方法

发布2022-02-17浏览349次

详情内容

前言

“If you cannot measure it, you cannot improve it”.

在日常开发中,我们对一些代码的调用或者工具的使用会存在多种选择方式,在不确定他们性能的时候,我们首先想要做的就是去测量它。大多数时候,我们会简单的采用多次计数的方式来测量,来看这个方法的总耗时。

但是,如果熟悉JVM类加载机制的话,应该知道JVM默认的执行模式是JIT编译与解释混合执行。JVM通过热点代码统计分析,识别高频方法的调用、循环体、公共模块等,基于JIT动态编译技术,会将热点代码转换成机器码,直接交给CPU执行。
在这里插入图片描述
也就是说,JVM会不断的进行编译优化,这就使得很难确定重复多少次才能得到一个稳定的测试结果?所以,很多有经验的同学会在测试代码前写一段预热的逻辑。

JMH,全称 Java Microbenchmark Harness (微基准测试框架),是专门用于Java代码微基准测试的一套测试工具API,是由 OpenJDK/Oracle 官方发布的工具。何谓 Micro Benchmark 呢?简单地说就是在 method 层面上的 benchmark,精度可以精确到微秒级。

Java的基准测试需要注意的几个点:

  • 测试前需要预热。
  • 防止无用代码进入测试方法中。
  • 并发测试。
  • 测试结果呈现。

JMH的使用场景:

  • 定量分析某个热点函数的优化效果
  • 想定量地知道某个函数需要执行多长时间,以及执行时间和输入变量的相关性
  • 对比一个函数的多种实现方式

本篇主要是介绍JMH的DEMO演示,和常用的注解参数。希望能对你起到帮助。

DEMO 演示

这里先演示一个DEMO,让不了解JMH的同学能够快速掌握这个工具的大概用法。

1.测试项目构建

JMH是内置Java9及之后的版本。这里是以Java8进行说明。

为了方便,这里直接介绍使用maven构建JMH测试项目的方式。

第一种是使用命令行构建,在指定目录下执行以下命令:

$ mvn archetype:generate \
          -DinteractiveMode=false \
          -DarchetypeGroupId=org.openjdk.jmh \
          -DarchetypeArtifactId=jmh-java-benchmark-archetype \
          -DgroupId=org.sample \
          -DartifactId=test \
          -Dversion=1.0

    对应目录下会出现一个test项目,打开项目后我们会看到这样的项目结构。
    在这里插入图片描述
    第二种方式就是直接在现有的maven项目中添加jmh-core和jmh-generator-annprocess的依赖来集成JMH。

       <dependency>
                <groupId>org.openjdk.jmh</groupId>
                <artifactId>jmh-core</artifactId>
                <version>${jmh.version}</version>
            </dependency>
            <dependency>
                <groupId>org.openjdk.jmh</groupId>
                <artifactId>jmh-generator-annprocess</artifactId>
                <version>${jmh.version}</version>
                <scope>provided</scope>
            </dependency>
    
      8
    • 9
    • 10
    • 11

    2.编写性能测试

    这里我以测试LinkedList 通过index 方式迭代和foreach 方式迭代的性能差距为例子,编写测试类,涉及到的注解在之后会讲解,

    /**
     * @author Richard_yyf
     * @version 1.0 2019/8https://files.jxasp.com/image/27
     */
    
    @State(Scope.Benchmark)
    @OutputTimeUnit(TimeUnit.SECONDS)
    @Threads(Threads.MAX)
    public class LinkedListIterationBenchMark {
     private static final int SIZE = 10000;
    
        private List<String> list = new LinkedList<>();
        
        @Setup
        public void setUp() {
            for (int i = 0; i < SIZE; i++) {
                list.add(String.valueOf(i));
            }
        }
    
        @Benchmark
        @BenchmarkMode(Mode.Throughput)
        public void forIndexIterate() {
            for (int i = 0; i < list.size(); i++) {
                list.get(i);
                System.out.print("");
            }
        }
    
        @Benchmark
        @BenchmarkMode(Mode.Throughput)
        public void forEachIterate() {
            for (String s : list) {
                System.out.print("");
            }
        }
    }
    
      8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    3.执行测试

    运行 JMH 基准测试有两种方式,一个是生产jar文件运行,另一个是直接写main函数或者放在单元测试中执行。

    生成jar文件的形式主要是针对一些比较大的测试,可能对机器性能或者真实环境模拟有一些需求,需要将测试方法写好了放在linux环境执行。具体命令如下

    $ mvn clean install
    $ java -jar target/benchmarks.jar
    
    • 1
    • 2

    我们日常中遇到的一般是一些小测试,比如我上面写的例子,直接在IDE中跑就好了。启动方式如下:

     public static void main(String[] args) throws RunnerException {
            Options opt = new OptionsBuilder()
                    .include(LinkedListIterationBenchMark.class.getSimpleName())
                    .forks(1)
                    .warmupIterations(2)
                    .measurementIterations(2)
                 .output("E:/Benchmark.log")
                    .build();
    
            new Runner(opt).run();
        }
    
      8
    • 9
    • 10
    • 11

    4. 报告结果

    输出结果如下,

    最后的结果:

    Benchmark                                      Mode  Cnt     Score   Error  Units
    LinkedListIterationBenchMark.forEachIterate   thrpt    2  1192.380          ops/s
    LinkedListIterationBenchMark.forIndexIterate  thrpt    2   206.866          ops/s
    
    • 1
    • 2
    • 3

    整个过程:

    # Detecting actual CPU count: 12 detected
    # JMH version: 1.21
    # VM version: JDK 1.8.0_131, Java HotSpot(TM) 64-Bit Server VM, 25.131-b11
    # VM invoker: C:\Program Files\Java\jdk1.8.0_131\jre\bin\java.exe
    # VM options: -javaagent:D:\Program Files\JetBrains\IntelliJ IDEA 2018.2.2\lib\idea_rt.jar=65175:D:\Program Files\JetBrains\IntelliJ IDEA 2018.2.2\bin -Dfile.encoding=UTF-8
    # Warmup: 2 iterations, 10 s each
    # Measurement: 2 iterations, 10 s each
    # Timeout: 10 min per iteration
    # Threads: 12 threads, will synchronize iterations
    # Benchmark mode: Throughput, ops/time
    # Benchmark: org.sample.jmh.LinkedListIterationBenchMark.forEachIterate
    
    # Run progress: 0.00% complete, ETA 00:01:20
    # Fork: 1 of 1
    # Warmup Iteration   1: 1189.267 ops/s
    # Warmup Iteration   2: 1197.321 ops/s
    Iteration   1: 1193.062 ops/s
    Iteration   2: 1191.698 ops/s
    
    
    Result "org.sample.jmh.LinkedListIterationBenchMark.forEachIterate":
      1192.380 ops/s
    
    
    # JMH version: 1.21
    # VM version: JDK 1.8.0_131, Java HotSpot(TM) 64-Bit Server VM, 25.131-b11
    # VM invoker: C:\Program Files\Java\jdk1.8.0_131\jre\bin\java.exe
    # VM options: -javaagent:D:\Program Files\JetBrains\IntelliJ IDEA 2018.2.2\lib\idea_rt.jar=65175:D:\Program Files\JetBrains\IntelliJ IDEA 2018.2.2\bin -Dfile.encoding=UTF-8
    # Warmup: 2 iterations, 10 s each
    # Measurement: 2 iterations, 10 s each
    # Timeout: 10 min per iteration
    # Threads: 12 threads, will synchronize iterations
    # Benchmark mode: Throughput, ops/time
    # Benchmark: org.sample.jmh.LinkedListIterationBenchMark.forIndexIterate
    
    # Run progress: 50.00% complete, ETA 00:00:40
    # Fork: 1 of 1
    # Warmup Iteration   1: 205.676 ops/s
    # Warmup Iteration   2: 206.512 ops/s
    Iteration   1: 206.542 ops/s
    Iteration   2: 207.189 ops/s
    
    
    Result "org.sample.jmh.LinkedListIterationBenchMark.forIndexIterate":
      206.866 ops/s
    
    
    # Run complete. Total time: 00:01:21
    
    REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on
    why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial
    experiments, perform baseline and negative tests that provide experimental control, make sure
    the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts.
    Do not assume the numbers tell you what you want them to tell.
    
    Benchmark                                      Mode  Cnt     Score   Error  Units
    LinkedListIterationBenchMark.forEachIterate   thrpt    2  1192.380          ops/s
    LinkedListIterationBenchMark.forIndexIterate  thrpt    2   206.866          ops/s
    
      8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58

    注解介绍

    下面我们来详细介绍一下相关的注解,

    @BenchmarkMode

    微基准测试类型。JMH 提供了以下几种类型进行支持:

    类型描述
    Throughput每段时间执行的次数,一般是秒
    AverageTime平均时间,每次操作的平均耗时
    SampleTime在测试中,随机进行采样执行的时间
    SingleShotTime在每次执行中计算耗时
    All所有模式

    可以注释在方法级别,也可以注释在类级别,

    @BenchmarkMode(Mode.All)
    public class LinkedListIterationBenchMark {
     ...
    }
    @Benchmark
    @BenchmarkMode({Mode.Throughput, Mode.SingleShotTime})
    public void m() {
     ...
    }
    
      8
    • 9

    @Warmup

    这个单词的意思就是预热,iterations = 3就是指预热轮数。

    @Benchmark
    @BenchmarkMode({Mode.Throughput, Mode.SingleShotTime})
    @Warmup(iterations = 3)
    public void m() {
     ...
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    @Measurement

    正式度量计算的轮数。

    • iterations 进行测试的轮次
    • time 每轮进行的时长
    • timeUnit时长单位
    @Benchmark
    @BenchmarkMode({Mode.Throughput, Mode.SingleShotTime})
    @Measurement(iterations = 3)
    public void m() {
     ...
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    @Threads

    每个进程中的测试线程。

    @Threads(Threads.MAX)
    public class LinkedListIterationBenchMark {
     ...
    }
    
    • 1
    • 2
    • 3
    • 4

    @Fork

    进行 fork 的次数。如果 fork 数是3的话,则 JMH 会 fork 出3个进程来进行测试。

    @Benchmark
    @BenchmarkMode({Mode.Throughput, Mode.SingleShotTime})
    @Fork(value = 3)
    public void m() {
     ...
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    @OutputTimeUnit
    基准测试结果的时间类型。一般选择秒、毫秒、微秒。

    @OutputTimeUnit(TimeUnit.SECONDS)
    public class LinkedListIterationBenchMark {
     ...
    }
    
    • 1
    • 2
    • 3
    • 4

    @Benchmark

    方法级注解,表示该方法是需要进行 benchmark 的对象,用法和 JUnit 的 @Test 类似。

    @Param

    属性级注解,@Param 可以用来指定某项参数的多种情况。特别适合用来测试一个函数在不同的参数输入的情况下的性能。

    @Setup

    方法级注解,这个注解的作用就是我们需要在测试之前进行一些准备工作,比如对一些数据的初始化之类的。

    @TearDown

    方法级注解,这个注解的作用就是我们需要在测试之后进行一些结束工作,比如关闭线程池,数据库连接等的,主要用于资源的回收等。

    @State

    当使用@Setup参数的时候,必须在类上加这个参数,不然会提示无法运行。

    就比如我上面的例子中,就必须设置state。

    State 用于声明某个类是一个“状态”,然后接受一个 Scope 参数用来表示该状态的共享范围。因为很多 benchmark 会需要一些表示状态的类,JMH 允许你把这些类以依赖注入的方式注入到 benchmark 函数里。Scope 主要分为三种。

    • Thread: 该状态为每个线程独享。
    • Group: 该状态为同一个组里面所有线程共享。
    • Benchmark: 该状态在所有线程间共享。

    启动方法

    在启动方法中,可以直接指定上述说到的一些参数,并且能将测试结果输出到指定文件中,

      /**
         * 仅限于IDE中运行
         * 命令行模式 则是 build 然后 java -jar 启动
         *
         * 1. 这是benchmark 启动的入口
         * 2. 这里同时还完成了JMH测试的一些配置工作
         * 3. 默认场景下,JMH会去找寻标注了@Benchmark的方法,可以通过include和exclude两个方法来完成包含以及排除的语义
         */
        public static void main(String[] args) throws RunnerException {
            Options opt = new OptionsBuilder()
                    // 包含语义
                    // 可以用方法名,也可以用XXX.class.getSimpleName()
                    .include("Helloworld")
                    // 排除语义
                    .exclude("Pref")
                    // 预热10轮
                    .warmupIterations(10)
                    // 代表正式计量测试做10轮,
                    // 而每次都是先执行完预热再执行正式计量,
                    // 内容都是调用标注了@Benchmark的代码。
                    .measurementIterations(10)
                    //  forks(3)指的是做3轮测试,
                    // 因为一次测试无法有效的代表结果,
                    // 所以通过3轮测试较为全面的测试,
                    // 而每一轮都是先预热,再正式计量。
                    .forks(3)
                 .output("E:/Benchmark.log")
                    .build();
    
            new Runner(opt).run();
        }
    
      8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31

    结语

    基于JMH可以对很多工具和框架进行测试,比如日志框架性能对比、BeanCopy性能对比 等,更多的example可以参考官方给出的JMH samples (https://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/)

    作者从 Java Developer 角度来谈谈一些常见的代码测试陷阱,分析他们和操作系统底层以及 Java 底层的关联性,并借助 JMH 来帮助大家摆脱这些陷阱。

    作者:Richard_Yi
    来源:juejin.cn/post/6844903936869007368

    相关技术文章

    点击QQ咨询
    开通会员
    返回顶部
    ×
    微信扫码支付
    微信扫码支付
    确定支付下载
    请使用微信描二维码支付
    ×

    提示信息

    ×

    选择支付方式

    • 微信支付
    • 支付宝付款
    确定支付下载