ADPCM格式音频编解码:https://lists.ffmpeg.org/doxygen/3.2/adpcm_8c_source.html
以下是代码:
- 1 /*
- 2 * Copyright (c) 2001-2003 The FFmpeg project
- 3 *
- 4 * first version by Francois Revol (revol@free.fr)
- 5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
- 6 * by Mike Melanson (melanson@pcisys.net)
- 7 * CD-ROM XA ADPCM codec by BERO
- 8 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
- 9 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
- 10 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
- 11 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
- 12 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
- 13 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
- 14 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
- 15 *
- 16 * This file is part of FFmpeg.
- 17 *
- 18 * FFmpeg is free software; you can redistribute it and/or
- 19 * modify it under the terms of the GNU Lesser General Public
- 20 * License as published by the Free Software Foundation; either
- 21 * version 2.1 of the License, or (at your option) any later version.
- 22 *
- 23 * FFmpeg is distributed in the hope that it will be useful,
- 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
- 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- 26 * Lesser General Public License for more details.
- 27 *
- 28 * You should have received a copy of the GNU Lesser General Public
- 29 * License along with FFmpeg; if not, write to the Free Software
- 30 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- 31 */
- 32 #include "avcodec.h"
- 33 #include "get_bits.h"
- 34 #include "bytestream.h"
- 35 #include "adpcm.h"
- 36 #include "adpcm_data.h"
- 37 #include "internal.h"
- 38
- 39 /**
- 40 * @file
- 41 * ADPCM decoders
- 42 * Features and limitations:
- 43 *
- 44 * Reference documents:
- 45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
- 46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
- 47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
- 48 * http://openquicktime.sourceforge.net/
- 49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
- 50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
- 51 * SoX source code http://sox.sourceforge.net/
- 52 *
- 53 * CD-ROM XA:
- 54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
- 55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
- 56 * readstr http://www.geocities.co.jp/Playtownhttps://cdn.jxasp.com:9143/image/2004/
- 57 */
- 58
- 59 /* These are for CD-ROM XA ADPCM */
- 60 static const int xa_adpcm_table[5][2] = {
- 61 { 0, 0 },
- 62 { 60, 0 },
- 63 { 115, -52 },
- 64 { 98, -55 },
- 65 { 122, -60 }
- 66 };
- 67
- 68 static const int ea_adpcm_table[] = {
- 69 0, 240, 460, 392,
- 70 0, 0, -208, -220,
- 71 0, 1, 3, 4,
- 72 7, 8, 10, 11,
- 73 0, -1, -3, -4
- 74 };
- 75
- 76 // padded to zero where table size is less then 16
- 77 static const int swf_index_tables[4][16] = {
- 78 /*2*/ { -1, 2 },
- 79 /*3*/ { -1, -1, 2, 4 },
- 80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
- 81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
- 82 };
- 83
- 84 /* end of tables */
- 85
- 86 typedef struct ADPCMDecodeContext {
- 87 ADPCMChannelStatus status[14];
- 88 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
- 89 int has_status;
- 90 } ADPCMDecodeContext;
- 91
- 92 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
- 93 {
- 94 ADPCMDecodeContext *c = avctx->priv_data;
- 95 unsigned int min_channels = 1;
- 96 unsigned int max_channels = 2;
- 97
- 98 switch(avctx->codec->id) {
- 99 case AV_CODEC_ID_ADPCM_DTK:
- 100 case AV_CODEC_ID_ADPCM_EA:
- 101 min_channels = 2;
- 102 break;
- 103 case AV_CODEC_ID_ADPCM_AFC:
- 104 case AV_CODEC_ID_ADPCM_EA_R1:
- 105 case AV_CODEC_ID_ADPCM_EA_R2:
- 106 case AV_CODEC_ID_ADPCM_EA_R3:
- 107 case AV_CODEC_ID_ADPCM_EA_XAS:
- 108 max_channels = 6;
- 109 break;
- 110 case AV_CODEC_ID_ADPCM_MTAF:
- 111 min_channels = 2;
- 112 max_channels = 8;
- 113 break;
- 114 case AV_CODEC_ID_ADPCM_PSX:
- 115 max_channels = 8;
- 116 break;
- 117 case AV_CODEC_ID_ADPCM_IMA_DAT4:
- 118 case AV_CODEC_ID_ADPCM_THP:
- 119 case AV_CODEC_ID_ADPCM_THP_LE:
- 120 max_channels = 14;
- 121 break;
- 122 }
- 123 if (avctx->channels < min_channels || avctx->channels > max_channels) {
- 124 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
- 125 return AVERROR(EINVAL);
- 126 }
- 127
- 128 switch(avctx->codec->id) {
- 129 case AV_CODEC_ID_ADPCM_CT:
- 130 c->status[0].step = c->status[1].step = 511;
- 131 break;
- 132 case AV_CODEC_ID_ADPCM_IMA_WAV:
- 133 if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
- 134 return AVERROR_INVALIDDATA;
- 135 break;
- 136 case AV_CODEC_ID_ADPCM_IMA_APC:
- 137 if (avctx->extradata && avctx->extradata_size >= 8) {
- 138 c->status[0].predictor = AV_RL32(avctx->extradata);
- 139 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
- 140 }
- 141 break;
- 142 case AV_CODEC_ID_ADPCM_IMA_WS:
- 143 if (avctx->extradata && avctx->extradata_size >= 2)
- 144 c->vqa_version = AV_RL16(avctx->extradata);
- 145 break;
- 146 default:
- 147 break;
- 148 }
- 149
- 150 switch(avctx->codec->id) {
- 151 case AV_CODEC_ID_ADPCM_AICA:
- 152 case AV_CODEC_ID_ADPCM_IMA_DAT4:
- 153 case AV_CODEC_ID_ADPCM_IMA_QT:
- 154 case AV_CODEC_ID_ADPCM_IMA_WAV:
- 155 case AV_CODEC_ID_ADPCM_4XM:
- 156 case AV_CODEC_ID_ADPCM_XA:
- 157 case AV_CODEC_ID_ADPCM_EA_R1:
- 158 case AV_CODEC_ID_ADPCM_EA_R2:
- 159 case AV_CODEC_ID_ADPCM_EA_R3:
- 160 case AV_CODEC_ID_ADPCM_EA_XAS:
- 161 case AV_CODEC_ID_ADPCM_THP:
- 162 case AV_CODEC_ID_ADPCM_THP_LE:
- 163 case AV_CODEC_ID_ADPCM_AFC:
- 164 case AV_CODEC_ID_ADPCM_DTK:
- 165 case AV_CODEC_ID_ADPCM_PSX:
- 166 case AV_CODEC_ID_ADPCM_MTAF:
- 167 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
- 168 break;
- 169 case AV_CODEC_ID_ADPCM_IMA_WS:
- 170 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
- 171 AV_SAMPLE_FMT_S16;
- 172 break;
- 173 default:
- 174 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
- 175 }
- 176
- 177 return 0;
- 178 }
- 179
- 180 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
- 181 {
- 182 int step_index;
- 183 int predictor;
- 184 int sign, delta, diff, step;
- 185
- 186 step = ff_adpcm_step_table[c->step_index];
- 187 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
- 188 step_index = av_clip(step_index, 0, 88);
- 189
- 190 sign = nibble & 8;
- 191 delta = nibble & 7;
- 192 /* perform direct multiplication instead of series of jumps proposed by
- 193 * the reference ADPCM implementation since modern CPUs can do the mults
- 194 * quickly enough */
- 195 diff = ((2 * delta + 1) * step) >> shift;
- 196 predictor = c->predictor;
- 197 if (sign) predictor -= diff;
- 198 else predictor += diff;
- 199
- 200 c->predictor = av_clip_int16(predictor);
- 201 c->step_index = step_index;
- 202
- 203 return (int16_t)c->predictor;
- 204 }
- 205
- 206 static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
- 207 {
- 208 int nibble, step_index, predictor, sign, delta, diff, step, shift;
- 209
- 210 shift = bps - 1;
- 211 nibble = get_bits_le(gb, bps),
- 212 step = ff_adpcm_step_table[c->step_index];
- 213 step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
- 214 step_index = av_clip(step_index, 0, 88);
- 215
- 216 sign = nibble & (1 << shift);
- 217 delta = av_mod_uintp2(nibble, shift);
- 218 diff = ((2 * delta + 1) * step) >> shift;
- 219 predictor = c->predictor;
- 220 if (sign) predictor -= diff;
- 221 else predictor += diff;
- 222
- 223 c->predictor = av_clip_int16(predictor);
- 224 c->step_index = step_index;
- 225
- 226 return (int16_t)c->predictor;
- 227 }
- 228
- 229 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
- 230 {
- 231 int step_index;
- 232 int predictor;
- 233 int diff, step;
- 234
- 235 step = ff_adpcm_step_table[c->step_index];
- 236 step_index = c->step_index + ff_adpcm_index_table[nibble];
- 237 step_index = av_clip(step_index, 0, 88);
- 238
- 239 diff = step >> 3;
- 240 if (nibble & 4) diff += step;
- 241 if (nibble & 2) diff += step >> 1;
- 242 if (nibble & 1) diff += step >> 2;
- 243
- 244 if (nibble & 8)
- 245 predictor = c->predictor - diff;
- 246 else
- 247 predictor = c->predictor + diff;
- 248
- 249 c->predictor = av_clip_int16(predictor);
- 250 c->step_index = step_index;
- 251
- 252 return c->predictor;
- 253 }
- 254
- 255 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
- 256 {
- 257 int predictor;
- 258
- 259 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
- 260 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
- 261
- 262 c->sample2 = c->sample1;
- 263 c->sample1 = av_clip_int16(predictor);
- 264 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
- 265 if (c->idelta < 16) c->idelta = 16;
- 266 if (c->idelta > INT_MAX/768) {
- 267 av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
- 268 c->idelta = INT_MAX/768;
- 269 }
- 270
- 271 return c->sample1;
- 272 }
- 273
- 274 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
- 275 {
- 276 int step_index, predictor, sign, delta, diff, step;
- 277
- 278 step = ff_adpcm_oki_step_table[c->step_index];
- 279 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
- 280 step_index = av_clip(step_index, 0, 48);
- 281
- 282 sign = nibble & 8;
- 283 delta = nibble & 7;
- 284 diff = ((2 * delta + 1) * step) >> 3;
- 285 predictor = c->predictor;
- 286 if (sign) predictor -= diff;
- 287 else predictor += diff;
- 288
- 289 c->predictor = av_clip_intp2(predictor, 11);
- 290 c->step_index = step_index;
- 291
- 292 return c->predictor << 4;
- 293 }
- 294
- 295 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
- 296 {
- 297 int sign, delta, diff;
- 298 int new_step;
- 299
- 300 sign = nibble & 8;
- 301 delta = nibble & 7;
- 302 /* perform direct multiplication instead of series of jumps proposed by
- 303 * the reference ADPCM implementation since modern CPUs can do the mults
- 304 * quickly enough */
- 305 diff = ((2 * delta + 1) * c->step) >> 3;
- 306 /* predictor update is not so trivial: predictor is multiplied on 254https://cdn.jxasp.com:9143/image/256 before updating */
- 307 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
- 308 c->predictor = av_clip_int16(c->predictor);
- 309 /* calculate new step and clamp it to range 511..32767 */
- 310 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
- 311 c->step = av_clip(new_step, 511, 32767);
- 312
- 313 return (int16_t)c->predictor;
- 314 }
- 315
- 316 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
- 317 {
- 318 int sign, delta, diff;
- 319
- 320 sign = nibble & (1<<(size-1));
- 321 delta = nibble & ((1<<(size-1))-1);
- 322 diff = delta << (7 + c->step + shift);
- 323
- 324 /* clamp result */
- 325 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
- 326
- 327 /* calculate new step */
- 328 if (delta >= (2*size - 3) && c->step < 3)
- 329 c->step++;
- 330 else if (delta == 0 && c->step > 0)
- 331 c->step--;
- 332
- 333 return (int16_t) c->predictor;
- 334 }
- 335
- 336 static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
- 337 {
- 338 if(!c->step) {
- 339 c->predictor = 0;
- 340 c->step = 127;
- 341 }
- 342
- 343 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
- 344 c->predictor = av_clip_int16(c->predictor);
- 345 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
- 346 c->step = av_clip(c->step, 127, 24567);
- 347 return c->predictor;
- 348 }
- 349
- 350 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
- 351 {
- 352 c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
- 353 c->predictor = av_clip_int16(c->predictor);
- 354 c->step += ff_adpcm_index_table[nibble];
- 355 c->step = av_clip_uintp2(c->step, 5);
- 356 return c->predictor;
- 357 }
- 358
- 359 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
- 360 const uint8_t *in, ADPCMChannelStatus *left,
- 361 ADPCMChannelStatus *right, int channels, int sample_offset)
- 362 {
- 363 int i, j;
- 364 int shift,filter,f0,f1;
- 365 int s_1,s_2;
- 366 int d,s,t;
- 367
- 368 out0 += sample_offset;
- 369 if (channels == 1)
- 370 out1 = out0 + 28;
- 371 else
- 372 out1 += sample_offset;
- 373
- 374 for(i=0;i<4;i++) {
- 375 shift = 12 - (in[4+i*2] & 15);
- 376 filter = in[4+i*2] >> 4;
- 377 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
- 378 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
- 379 filter=0;
- 380 }
- 381 f0 = xa_adpcm_table[filter][0];
- 382 f1 = xa_adpcm_table[filter][1];
- 383
- 384 s_1 = left->sample1;
- 385 s_2 = left->sample2;
- 386
- 387 for(j=0;j<28;j++) {
- 388 d = in[16+i+j*4];
- 389
- 390 t = sign_extend(d, 4);
- 391 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
- 392 s_2 = s_1;
- 393 s_1 = av_clip_int16(s);
- 394 out0[j] = s_1;
- 395 }
- 396
- 397 if (channels == 2) {
- 398 left->sample1 = s_1;
- 399 left->sample2 = s_2;
- 400 s_1 = right->sample1;
- 401 s_2 = right->sample2;
- 402 }
- 403
- 404 shift = 12 - (in[5+i*2] & 15);
- 405 filter = in[5+i*2] >> 4;
- 406 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
- 407 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
- 408 filter=0;
- 409 }
- 410
- 411 f0 = xa_adpcm_table[filter][0];
- 412 f1 = xa_adpcm_table[filter][1];
- 413
- 414 for(j=0;j<28;j++) {
- 415 d = in[16+i+j*4];
- 416
- 417 t = sign_extend(d >> 4, 4);
- 418 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
- 419 s_2 = s_1;
- 420 s_1 = av_clip_int16(s);
- 421 out1[j] = s_1;
- 422 }
- 423
- 424 if (channels == 2) {
- 425 right->sample1 = s_1;
- 426 right->sample2 = s_2;
- 427 } else {
- 428 left->sample1 = s_1;
- 429 left->sample2 = s_2;
- 430 }
- 431
- 432 out0 += 28 * (3 - channels);
- 433 out1 += 28 * (3 - channels);
- 434 }
- 435
- 436 return 0;
- 437 }
- 438
- 439 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
- 440 {
- 441 ADPCMDecodeContext *c = avctx->priv_data;
- 442 GetBitContext gb;
- 443 const int *table;
- 444 int k0, signmask, nb_bits, count;
- 445 int size = buf_size*8;
- 446 int i;
- 447
- 448 init_get_bits(&gb, buf, size);
- 449
- 450 //read bits & initial values
- 451 nb_bits = get_bits(&gb, 2)+2;
- 452 table = swf_index_tables[nb_bits-2];
- 453 k0 = 1 << (nb_bits-2);
- 454 signmask = 1 << (nb_bits-1);
- 455
- 456 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
- 457 for (i = 0; i < avctx->channels; i++) {
- 458 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
- 459 c->status[i].step_index = get_bits(&gb, 6);
- 460 }
- 461
- 462 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
- 463 int i;
- 464
- 465 for (i = 0; i < avctx->channels; i++) {
- 466 // similar to IMA adpcm
- 467 int delta = get_bits(&gb, nb_bits);
- 468 int step = ff_adpcm_step_table[c->status[i].step_index];
- 469 int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
- 470 int k = k0;
- 471
- 472 do {
- 473 if (delta & k)
- 474 vpdiff += step;
- 475 step >>= 1;
- 476 k >>= 1;
- 477 } while(k);
- 478 vpdiff += step;
- 479
- 480 if (delta & signmask)
- 481 c->status[i].predictor -= vpdiff;
- 482 else
- 483 c->status[i].predictor += vpdiff;
- 484
- 485 c->status[i].step_index += table[delta & (~signmask)];
- 486
- 487 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
- 488 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
- 489
- 490 *samples++ = c->status[i].predictor;
- 491 }
- 492 }
- 493 }
- 494 }
- 495
- 496 /**
- 497 * Get the number of samples that will be decoded from the packet.
- 498 * In one case, this is actually the maximum number of samples possible to
- 499 * decode with the given buf_size.
- 500 *
- 501 * @param[out] coded_samples set to the number of samples as coded in the
- 502 * packet, or 0 if the codec does not encode the
- 503 * number of samples in each frame.
- 504 * @param[out] approx_nb_samples set to non-zero if the number of samples
- 505 * returned is an approximation.
- 506 */
- 507 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
- 508 int buf_size, int *coded_samples, int *approx_nb_samples)
- 509 {
- 510 ADPCMDecodeContext *s = avctx->priv_data;
- 511 int nb_samples = 0;
- 512 int ch = avctx->channels;
- 513 int has_coded_samples = 0;
- 514 int header_size;
- 515
- 516 *coded_samples = 0;
- 517 *approx_nb_samples = 0;
- 518
- 519 if(ch <= 0)
- 520 return 0;
- 521
- 522 switch (avctx->codec->id) {
- 523 /* constant, only check buf_size */
- 524 case AV_CODEC_ID_ADPCM_EA_XAS:
- 525 if (buf_size < 76 * ch)
- 526 return 0;
- 527 nb_samples = 128;
- 528 break;
- 529 case AV_CODEC_ID_ADPCM_IMA_QT:
- 530 if (buf_size < 34 * ch)
- 531 return 0;
- 532 nb_samples = 64;
- 533 break;
- 534 /* simple 4-bit adpcm */
- 535 case AV_CODEC_ID_ADPCM_CT:
- 536 case AV_CODEC_ID_ADPCM_IMA_APC:
- 537 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
- 538 case AV_CODEC_ID_ADPCM_IMA_OKI:
- 539 case AV_CODEC_ID_ADPCM_IMA_WS:
- 540 case AV_CODEC_ID_ADPCM_YAMAHA:
- 541 case AV_CODEC_ID_ADPCM_AICA:
- 542 nb_samples = buf_size * 2 / ch;
- 543 break;
- 544 }
- 545 if (nb_samples)
- 546 return nb_samples;
- 547
- 548 /* simple 4-bit adpcm, with header */
- 549 header_size = 0;
- 550 switch (avctx->codec->id) {
- 551 case AV_CODEC_ID_ADPCM_4XM:
- 552 case AV_CODEC_ID_ADPCM_IMA_DAT4:
- 553 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
- 554 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
- 555 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
- 556 }
- 557 if (header_size > 0)
- 558 return (buf_size - header_size) * 2 / ch;
- 559
- 560 /* more complex formats */
- 561 switch (avctx->codec->id) {
- 562 case AV_CODEC_ID_ADPCM_EA:
- 563 has_coded_samples = 1;
- 564 *coded_samples = bytestream2_get_le32(gb);
- 565 *coded_samples -= *coded_samples % 28;
- 566 nb_samples = (buf_size - 12) / 30 * 28;
- 567 break;
- 568 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
- 569 has_coded_samples = 1;
- 570 *coded_samples = bytestream2_get_le32(gb);
- 571 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
- 572 break;
- 573 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
- 574 nb_samples = (buf_size - ch) / ch * 2;
- 575 break;
- 576 case AV_CODEC_ID_ADPCM_EA_R1:
- 577 case AV_CODEC_ID_ADPCM_EA_R2:
- 578 case AV_CODEC_ID_ADPCM_EA_R3:
- 579 /* maximum number of samples */
- 580 /* has internal offsets and a per-frame switch to signal raw 16-bit */
- 581 has_coded_samples = 1;
- 582 switch (avctx->codec->id) {
- 583 case AV_CODEC_ID_ADPCM_EA_R1:
- 584 header_size = 4 + 9 * ch;
- 585 *coded_samples = bytestream2_get_le32(gb);
- 586 break;
- 587 case AV_CODEC_ID_ADPCM_EA_R2:
- 588 header_size = 4 + 5 * ch;
- 589 *coded_samples = bytestream2_get_le32(gb);
- 590 break;
- 591 case AV_CODEC_ID_ADPCM_EA_R3:
- 592 header_size = 4 + 5 * ch;
- 593 *coded_samples = bytestream2_get_be32(gb);
- 594 break;
- 595 }
- 596 *coded_samples -= *coded_samples % 28;
- 597 nb_samples = (buf_size - header_size) * 2 / ch;
- 598 nb_samples -= nb_samples % 28;
- 599 *approx_nb_samples = 1;
- 600 break;
- 601 case AV_CODEC_ID_ADPCM_IMA_DK3:
- 602 if (avctx->block_align > 0)
- 603 buf_size = FFMIN(buf_size, avctx->block_align);
- 604 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
- 605 break;
- 606 case AV_CODEC_ID_ADPCM_IMA_DK4:
- 607 if (avctx->block_align > 0)
- 608 buf_size = FFMIN(buf_size, avctx->block_align);
- 609 if (buf_size < 4 * ch)
- 610 return AVERROR_INVALIDDATA;
- 611 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
- 612 break;
- 613 case AV_CODEC_ID_ADPCM_IMA_RAD:
- 614 if (avctx->block_align > 0)
- 615 buf_size = FFMIN(buf_size, avctx->block_align);
- 616 nb_samples = (buf_size - 4 * ch) * 2 / ch;
- 617 break;
- 618 case AV_CODEC_ID_ADPCM_IMA_WAV:
- 619 {
- 620 int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
- 621 int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
- 622 if (avctx->block_align > 0)
- 623 buf_size = FFMIN(buf_size, avctx->block_align);
- 624 if (buf_size < 4 * ch)
- 625 return AVERROR_INVALIDDATA;
- 626 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
- 627 break;
- 628 }
- 629 case AV_CODEC_ID_ADPCM_MS:
- 630 if (avctx->block_align > 0)
- 631 buf_size = FFMIN(buf_size, avctx->block_align);
- 632 nb_samples = (buf_size - 6 * ch) * 2 / ch;
- 633 break;
- 634 case AV_CODEC_ID_ADPCM_MTAF:
- 635 if (avctx->block_align > 0)
- 636 buf_size = FFMIN(buf_size, avctx->block_align);
- 637 nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
- 638 break;
- 639 case AV_CODEC_ID_ADPCM_SBPRO_2:
- 640 case AV_CODEC_ID_ADPCM_SBPRO_3:
- 641 case AV_CODEC_ID_ADPCM_SBPRO_4:
- 642 {
- 643 int samples_per_byte;
- 644 switch (avctx->codec->id) {
- 645 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
- 646 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
- 647 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
- 648 }
- 649 if (!s->status[0].step_index) {
- 650 if (buf_size < ch)
- 651 return AVERROR_INVALIDDATA;
- 652 nb_samples++;
- 653 buf_size -= ch;
- 654 }
- 655 nb_samples += buf_size * samples_per_byte / ch;
- 656 break;
- 657 }
- 658 case AV_CODEC_ID_ADPCM_SWF:
- 659 {
- 660 int buf_bits = buf_size * 8 - 2;
- 661 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
- 662 int block_hdr_size = 22 * ch;
- 663 int block_size = block_hdr_size + nbits * ch * 4095;
- 664 int nblocks = buf_bits / block_size;
- 665 int bits_left = buf_bits - nblocks * block_size;
- 666 nb_samples = nblocks * 4096;
- 667 if (bits_left >= block_hdr_size)
- 668 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
- 669 break;
- 670 }
- 671 case AV_CODEC_ID_ADPCM_THP:
- 672 case AV_CODEC_ID_ADPCM_THP_LE:
- 673 if (avctx->extradata) {
- 674 nb_samples = buf_size * 14 / (8 * ch);
- 675 break;
- 676 }
- 677 has_coded_samples = 1;
- 678 bytestream2_skip(gb, 4); // channel size
- 679 *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
- 680 bytestream2_get_le32(gb) :
- 681 bytestream2_get_be32(gb);
- 682 buf_size -= 8 + 36 * ch;
- 683 buf_size /= ch;
- 684 nb_samples = buf_size / 8 * 14;
- 685 if (buf_size % 8 > 1)
- 686 nb_samples += (buf_size % 8 - 1) * 2;
- 687 *approx_nb_samples = 1;
- 688 break;
- 689 case AV_CODEC_ID_ADPCM_AFC:
- 690 nb_samples = buf_size / (9 * ch) * 16;
- 691 break;
- 692 case AV_CODEC_ID_ADPCM_XA:
- 693 nb_samples = (buf_size / 128) * 224 / ch;
- 694 break;
- 695 case AV_CODEC_ID_ADPCM_DTK:
- 696 case AV_CODEC_ID_ADPCM_PSX:
- 697 nb_samples = buf_size / (16 * ch) * 28;
- 698 break;
- 699 }
- 700
- 701 /* validate coded sample count */
- 702 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
- 703 return AVERROR_INVALIDDATA;
- 704
- 705 return nb_samples;
- 706 }
- 707
- 708 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
- 709 int *got_frame_ptr, AVPacket *avpkt)
- 710 {
- 711 AVFrame *frame = data;
- 712 const uint8_t *buf = avpkt->data;
- 713 int buf_size = avpkt->size;
- 714 ADPCMDecodeContext *c = avctx->priv_data;
- 715 ADPCMChannelStatus *cs;
- 716 int n, m, channel, i;
- 717 int16_t *samples;
- 718 int16_t **samples_p;
- 719 int st; /* stereo */
- 720 int count1, count2;
- 721 int nb_samples, coded_samples, approx_nb_samples, ret;
- 722 GetByteContext gb;
- 723
- 724 bytestream2_init(&gb, buf, buf_size);
- 725 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
- 726 if (nb_samples <= 0) {
- 727 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
- 728 return AVERROR_INVALIDDATA;
- 729 }
- 730
- 731 /* get output buffer */
- 732 frame->nb_samples = nb_samples;
- 733 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
- 734 return ret;
- 735 samples = (int16_t *)frame->data[0];
- 736 samples_p = (int16_t **)frame->extended_data;
- 737
- 738 /* use coded_samples when applicable */
- 739 /* it is always <= nb_samples, so the output buffer will be large enough */
- 740 if (coded_samples) {
- 741 if (!approx_nb_samples && coded_samples != nb_samples)
- 742 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
- 743 frame->nb_samples = nb_samples = coded_samples;
- 744 }
- 745
- 746 st = avctx->channels == 2 ? 1 : 0;
- 747
- 748 switch(avctx->codec->id) {
- 749 case AV_CODEC_ID_ADPCM_IMA_QT:
- 750 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
- 751 Channel data is interleaved per-chunk. */
- 752 for (channel = 0; channel < avctx->channels; channel++) {
- 753 int predictor;
- 754 int step_index;
- 755 cs = &(c->status[channel]);
- 756 /* (pppppp) (piiiiiii) */
- 757
- 758 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
- 759 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
- 760 step_index = predictor & 0x7F;
- 761 predictor &= ~0x7F;
- 762
- 763 if (cs->step_index == step_index) {
- 764 int diff = predictor - cs->predictor;
- 765 if (diff < 0)
- 766 diff = - diff;
- 767 if (diff > 0x7f)
- 768 goto update;
- 769 } else {
- 770 update:
- 771 cs->step_index = step_index;
- 772 cs->predictor = predictor;
- 773 }
- 774
- 775 if (cs->step_index > 88u){
- 776 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 777 channel, cs->step_index);
- 778 return AVERROR_INVALIDDATA;
- 779 }
- 780
- 781 samples = samples_p[channel];
- 782
- 783 for (m = 0; m < 64; m += 2) {
- 784 int byte = bytestream2_get_byteu(&gb);
- 785 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
- 786 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
- 787 }
- 788 }
- 789 break;
- 790 case AV_CODEC_ID_ADPCM_IMA_WAV:
- 791 for(i=0; i<avctx->channels; i++){
- 792 cs = &(c->status[i]);
- 793 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
- 794
- 795 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
- 796 if (cs->step_index > 88u){
- 797 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 798 i, cs->step_index);
- 799 return AVERROR_INVALIDDATA;
- 800 }
- 801 }
- 802
- 803 if (avctx->bits_per_coded_sample != 4) {
- 804 int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
- 805 int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
- 806 uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
- 807 GetBitContext g;
- 808
- 809 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
- 810 for (i = 0; i < avctx->channels; i++) {
- 811 int j;
- 812
- 813 cs = &c->status[i];
- 814 samples = &samples_p[i][1 + n * samples_per_block];
- 815 for (j = 0; j < block_size; j++) {
- 816 temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
- 817 (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
- 818 }
- 819 ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
- 820 if (ret < 0)
- 821 return ret;
- 822 for (m = 0; m < samples_per_block; m++) {
- 823 samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
- 824 avctx->bits_per_coded_sample);
- 825 }
- 826 }
- 827 }
- 828 bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
- 829 } else {
- 830 for (n = 0; n < (nb_samples - 1) / 8; n++) {
- 831 for (i = 0; i < avctx->channels; i++) {
- 832 cs = &c->status[i];
- 833 samples = &samples_p[i][1 + n * 8];
- 834 for (m = 0; m < 8; m += 2) {
- 835 int v = bytestream2_get_byteu(&gb);
- 836 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
- 837 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
- 838 }
- 839 }
- 840 }
- 841 }
- 842 break;
- 843 case AV_CODEC_ID_ADPCM_4XM:
- 844 for (i = 0; i < avctx->channels; i++)
- 845 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 846
- 847 for (i = 0; i < avctx->channels; i++) {
- 848 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
- 849 if (c->status[i].step_index > 88u) {
- 850 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 851 i, c->status[i].step_index);
- 852 return AVERROR_INVALIDDATA;
- 853 }
- 854 }
- 855
- 856 for (i = 0; i < avctx->channels; i++) {
- 857 samples = (int16_t *)frame->data[i];
- 858 cs = &c->status[i];
- 859 for (n = nb_samples >> 1; n > 0; n--) {
- 860 int v = bytestream2_get_byteu(&gb);
- 861 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
- 862 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
- 863 }
- 864 }
- 865 break;
- 866 case AV_CODEC_ID_ADPCM_MS:
- 867 {
- 868 int block_predictor;
- 869
- 870 block_predictor = bytestream2_get_byteu(&gb);
- 871 if (block_predictor > 6) {
- 872 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
- 873 block_predictor);
- 874 return AVERROR_INVALIDDATA;
- 875 }
- 876 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
- 877 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
- 878 if (st) {
- 879 block_predictor = bytestream2_get_byteu(&gb);
- 880 if (block_predictor > 6) {
- 881 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
- 882 block_predictor);
- 883 return AVERROR_INVALIDDATA;
- 884 }
- 885 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
- 886 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
- 887 }
- 888 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
- 889 if (st){
- 890 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
- 891 }
- 892
- 893 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
- 894 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
- 895 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
- 896 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
- 897
- 898 *samples++ = c->status[0].sample2;
- 899 if (st) *samples++ = c->status[1].sample2;
- 900 *samples++ = c->status[0].sample1;
- 901 if (st) *samples++ = c->status[1].sample1;
- 902 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
- 903 int byte = bytestream2_get_byteu(&gb);
- 904 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
- 905 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
- 906 }
- 907 break;
- 908 }
- 909 case AV_CODEC_ID_ADPCM_MTAF:
- 910 for (channel = 0; channel < avctx->channels; channel+=2) {
- 911 bytestream2_skipu(&gb, 4);
- 912 c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
- 913 c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
- 914 c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 915 bytestream2_skipu(&gb, 2);
- 916 c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 917 bytestream2_skipu(&gb, 2);
- 918 for (n = 0; n < nb_samples; n+=2) {
- 919 int v = bytestream2_get_byteu(&gb);
- 920 samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
- 921 samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
- 922 }
- 923 for (n = 0; n < nb_samples; n+=2) {
- 924 int v = bytestream2_get_byteu(&gb);
- 925 samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
- 926 samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
- 927 }
- 928 }
- 929 break;
- 930 case AV_CODEC_ID_ADPCM_IMA_DK4:
- 931 for (channel = 0; channel < avctx->channels; channel++) {
- 932 cs = &c->status[channel];
- 933 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
- 934 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
- 935 if (cs->step_index > 88u){
- 936 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 937 channel, cs->step_index);
- 938 return AVERROR_INVALIDDATA;
- 939 }
- 940 }
- 941 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
- 942 int v = bytestream2_get_byteu(&gb);
- 943 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
- 944 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
- 945 }
- 946 break;
- 947 case AV_CODEC_ID_ADPCM_IMA_DK3:
- 948 {
- 949 int last_byte = 0;
- 950 int nibble;
- 951 int decode_top_nibble_next = 0;
- 952 int diff_channel;
- 953 const int16_t *samples_end = samples + avctx->channels * nb_samples;
- 954
- 955 bytestream2_skipu(&gb, 10);
- 956 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 957 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 958 c->status[0].step_index = bytestream2_get_byteu(&gb);
- 959 c->status[1].step_index = bytestream2_get_byteu(&gb);
- 960 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
- 961 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
- 962 c->status[0].step_index, c->status[1].step_index);
- 963 return AVERROR_INVALIDDATA;
- 964 }
- 965 /* sign extend the predictors */
- 966 diff_channel = c->status[1].predictor;
- 967
- 968 /* DK3 ADPCM support macro */
- 969 #define DK3_GET_NEXT_NIBBLE() \
- 970 if (decode_top_nibble_next) { \
- 971 nibble = last_byte >> 4; \
- 972 decode_top_nibble_next = 0; \
- 973 } else { \
- 974 last_byte = bytestream2_get_byteu(&gb); \
- 975 nibble = last_byte & 0x0F; \
- 976 decode_top_nibble_next = 1; \
- 977 }
- 978
- 979 while (samples < samples_end) {
- 980
- 981 /* for this algorithm, c->status[0] is the sum channel and
- 982 * c->status[1] is the diff channel */
- 983
- 984 /* process the first predictor of the sum channel */
- 985 DK3_GET_NEXT_NIBBLE();
- 986 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
- 987
- 988 /* process the diff channel predictor */
- 989 DK3_GET_NEXT_NIBBLE();
- 990 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
- 991
- 992 /* process the first pair of stereo PCM samples */
- 993 diff_channel = (diff_channel + c->status[1].predictor) / 2;
- 994 *samples++ = c->status[0].predictor + c->status[1].predictor;
- 995 *samples++ = c->status[0].predictor - c->status[1].predictor;
- 996
- 997 /* process the second predictor of the sum channel */
- 998 DK3_GET_NEXT_NIBBLE();
- 999 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
- 1000
- 1001 /* process the second pair of stereo PCM samples */
- 1002 diff_channel = (diff_channel + c->status[1].predictor) / 2;
- 1003 *samples++ = c->status[0].predictor + c->status[1].predictor;
- 1004 *samples++ = c->status[0].predictor - c->status[1].predictor;
- 1005 }
- 1006
- 1007 if ((bytestream2_tell(&gb) & 1))
- 1008 bytestream2_skip(&gb, 1);
- 1009 break;
- 1010 }
- 1011 case AV_CODEC_ID_ADPCM_IMA_ISS:
- 1012 for (channel = 0; channel < avctx->channels; channel++) {
- 1013 cs = &c->status[channel];
- 1014 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1015 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1016 if (cs->step_index > 88u){
- 1017 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 1018 channel, cs->step_index);
- 1019 return AVERROR_INVALIDDATA;
- 1020 }
- 1021 }
- 1022
- 1023 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1024 int v1, v2;
- 1025 int v = bytestream2_get_byteu(&gb);
- 1026 /* nibbles are swapped for mono */
- 1027 if (st) {
- 1028 v1 = v >> 4;
- 1029 v2 = v & 0x0F;
- 1030 } else {
- 1031 v2 = v >> 4;
- 1032 v1 = v & 0x0F;
- 1033 }
- 1034 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
- 1035 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
- 1036 }
- 1037 break;
- 1038 case AV_CODEC_ID_ADPCM_IMA_DAT4:
- 1039 for (channel = 0; channel < avctx->channels; channel++) {
- 1040 cs = &c->status[channel];
- 1041 samples = samples_p[channel];
- 1042 bytestream2_skip(&gb, 4);
- 1043 for (n = 0; n < nb_samples; n += 2) {
- 1044 int v = bytestream2_get_byteu(&gb);
- 1045 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
- 1046 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
- 1047 }
- 1048 }
- 1049 break;
- 1050 case AV_CODEC_ID_ADPCM_IMA_APC:
- 1051 while (bytestream2_get_bytes_left(&gb) > 0) {
- 1052 int v = bytestream2_get_byteu(&gb);
- 1053 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
- 1054 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
- 1055 }
- 1056 break;
- 1057 case AV_CODEC_ID_ADPCM_IMA_OKI:
- 1058 while (bytestream2_get_bytes_left(&gb) > 0) {
- 1059 int v = bytestream2_get_byteu(&gb);
- 1060 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
- 1061 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
- 1062 }
- 1063 break;
- 1064 case AV_CODEC_ID_ADPCM_IMA_RAD:
- 1065 for (channel = 0; channel < avctx->channels; channel++) {
- 1066 cs = &c->status[channel];
- 1067 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1068 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1069 if (cs->step_index > 88u){
- 1070 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 1071 channel, cs->step_index);
- 1072 return AVERROR_INVALIDDATA;
- 1073 }
- 1074 }
- 1075 for (n = 0; n < nb_samples / 2; n++) {
- 1076 int byte[2];
- 1077
- 1078 byte[0] = bytestream2_get_byteu(&gb);
- 1079 if (st)
- 1080 byte[1] = bytestream2_get_byteu(&gb);
- 1081 for(channel = 0; channel < avctx->channels; channel++) {
- 1082 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
- 1083 }
- 1084 for(channel = 0; channel < avctx->channels; channel++) {
- 1085 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
- 1086 }
- 1087 }
- 1088 break;
- 1089 case AV_CODEC_ID_ADPCM_IMA_WS:
- 1090 if (c->vqa_version == 3) {
- 1091 for (channel = 0; channel < avctx->channels; channel++) {
- 1092 int16_t *smp = samples_p[channel];
- 1093
- 1094 for (n = nb_samples / 2; n > 0; n--) {
- 1095 int v = bytestream2_get_byteu(&gb);
- 1096 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
- 1097 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
- 1098 }
- 1099 }
- 1100 } else {
- 1101 for (n = nb_samples / 2; n > 0; n--) {
- 1102 for (channel = 0; channel < avctx->channels; channel++) {
- 1103 int v = bytestream2_get_byteu(&gb);
- 1104 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
- 1105 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
- 1106 }
- 1107 samples += avctx->channels;
- 1108 }
- 1109 }
- 1110 bytestream2_seek(&gb, 0, SEEK_END);
- 1111 break;
- 1112 case AV_CODEC_ID_ADPCM_XA:
- 1113 {
- 1114 int16_t *out0 = samples_p[0];
- 1115 int16_t *out1 = samples_p[1];
- 1116 int samples_per_block = 28 * (3 - avctx->channels) * 4;
- 1117 int sample_offset = 0;
- 1118 while (bytestream2_get_bytes_left(&gb) >= 128) {
- 1119 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
- 1120 &c->status[0], &c->status[1],
- 1121 avctx->channels, sample_offset)) < 0)
- 1122 return ret;
- 1123 bytestream2_skipu(&gb, 128);
- 1124 sample_offset += samples_per_block;
- 1125 }
- 1126 break;
- 1127 }
- 1128 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
- 1129 for (i=0; i<=st; i++) {
- 1130 c->status[i].step_index = bytestream2_get_le32u(&gb);
- 1131 if (c->status[i].step_index > 88u) {
- 1132 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
- 1133 i, c->status[i].step_index);
- 1134 return AVERROR_INVALIDDATA;
- 1135 }
- 1136 }
- 1137 for (i=0; i<=st; i++)
- 1138 c->status[i].predictor = bytestream2_get_le32u(&gb);
- 1139
- 1140 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1141 int byte = bytestream2_get_byteu(&gb);
- 1142 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
- 1143 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
- 1144 }
- 1145 break;
- 1146 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
- 1147 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1148 int byte = bytestream2_get_byteu(&gb);
- 1149 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
- 1150 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
- 1151 }
- 1152 break;
- 1153 case AV_CODEC_ID_ADPCM_EA:
- 1154 {
- 1155 int previous_left_sample, previous_right_sample;
- 1156 int current_left_sample, current_right_sample;
- 1157 int next_left_sample, next_right_sample;
- 1158 int coeff1l, coeff2l, coeff1r, coeff2r;
- 1159 int shift_left, shift_right;
- 1160
- 1161 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
- 1162 each coding 28 stereo samples. */
- 1163
- 1164 if(avctx->channels != 2)
- 1165 return AVERROR_INVALIDDATA;
- 1166
- 1167 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1168 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1169 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1170 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1171
- 1172 for (count1 = 0; count1 < nb_samples / 28; count1++) {
- 1173 int byte = bytestream2_get_byteu(&gb);
- 1174 coeff1l = ea_adpcm_table[ byte >> 4 ];
- 1175 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
- 1176 coeff1r = ea_adpcm_table[ byte & 0x0F];
- 1177 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
- 1178
- 1179 byte = bytestream2_get_byteu(&gb);
- 1180 shift_left = 20 - (byte >> 4);
- 1181 shift_right = 20 - (byte & 0x0F);
- 1182
- 1183 for (count2 = 0; count2 < 28; count2++) {
- 1184 byte = bytestream2_get_byteu(&gb);
- 1185 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
- 1186 next_right_sample = sign_extend(byte, 4) << shift_right;
- 1187
- 1188 next_left_sample = (next_left_sample +
- 1189 (current_left_sample * coeff1l) +
- 1190 (previous_left_sample * coeff2l) + 0x80) >> 8;
- 1191 next_right_sample = (next_right_sample +
- 1192 (current_right_sample * coeff1r) +
- 1193 (previous_right_sample * coeff2r) + 0x80) >> 8;
- 1194
- 1195 previous_left_sample = current_left_sample;
- 1196 current_left_sample = av_clip_int16(next_left_sample);
- 1197 previous_right_sample = current_right_sample;
- 1198 current_right_sample = av_clip_int16(next_right_sample);
- 1199 *samples++ = current_left_sample;
- 1200 *samples++ = current_right_sample;
- 1201 }
- 1202 }
- 1203
- 1204 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
- 1205
- 1206 break;
- 1207 }
- 1208 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
- 1209 {
- 1210 int coeff[2][2], shift[2];
- 1211
- 1212 for(channel = 0; channel < avctx->channels; channel++) {
- 1213 int byte = bytestream2_get_byteu(&gb);
- 1214 for (i=0; i<2; i++)
- 1215 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
- 1216 shift[channel] = 20 - (byte & 0x0F);
- 1217 }
- 1218 for (count1 = 0; count1 < nb_samples / 2; count1++) {
- 1219 int byte[2];
- 1220
- 1221 byte[0] = bytestream2_get_byteu(&gb);
- 1222 if (st) byte[1] = bytestream2_get_byteu(&gb);
- 1223 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
- 1224 for(channel = 0; channel < avctx->channels; channel++) {
- 1225 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
- 1226 sample = (sample +
- 1227 c->status[channel].sample1 * coeff[channel][0] +
- 1228 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
- 1229 c->status[channel].sample2 = c->status[channel].sample1;
- 1230 c->status[channel].sample1 = av_clip_int16(sample);
- 1231 *samples++ = c->status[channel].sample1;
- 1232 }
- 1233 }
- 1234 }
- 1235 bytestream2_seek(&gb, 0, SEEK_END);
- 1236 break;
- 1237 }
- 1238 case AV_CODEC_ID_ADPCM_EA_R1:
- 1239 case AV_CODEC_ID_ADPCM_EA_R2:
- 1240 case AV_CODEC_ID_ADPCM_EA_R3: {
- 1241 /* channel numbering
- 1242 2chan: 0=fl, 1=fr
- 1243 4chan: 0=fl, 1=rl, 2=fr, 3=rr
- 1244 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
- 1245 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
- 1246 int previous_sample, current_sample, next_sample;
- 1247 int coeff1, coeff2;
- 1248 int shift;
- 1249 unsigned int channel;
- 1250 uint16_t *samplesC;
- 1251 int count = 0;
- 1252 int offsets[6];
- 1253
- 1254 for (channel=0; channel<avctx->channels; channel++)
- 1255 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
- 1256 bytestream2_get_le32(&gb)) +
- 1257 (avctx->channels + 1) * 4;
- 1258
- 1259 for (channel=0; channel<avctx->channels; channel++) {
- 1260 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
- 1261 samplesC = samples_p[channel];
- 1262
- 1263 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
- 1264 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
- 1265 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
- 1266 } else {
- 1267 current_sample = c->status[channel].predictor;
- 1268 previous_sample = c->status[channel].prev_sample;
- 1269 }
- 1270
- 1271 for (count1 = 0; count1 < nb_samples / 28; count1++) {
- 1272 int byte = bytestream2_get_byte(&gb);
- 1273 if (byte == 0xEE) { /* only seen in R2 and R3 */
- 1274 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
- 1275 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
- 1276
- 1277 for (count2=0; count2<28; count2++)
- 1278 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
- 1279 } else {
- 1280 coeff1 = ea_adpcm_table[ byte >> 4 ];
- 1281 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
- 1282 shift = 20 - (byte & 0x0F);
- 1283
- 1284 for (count2=0; count2<28; count2++) {
- 1285 if (count2 & 1)
- 1286 next_sample = sign_extend(byte, 4) << shift;
- 1287 else {
- 1288 byte = bytestream2_get_byte(&gb);
- 1289 next_sample = sign_extend(byte >> 4, 4) << shift;
- 1290 }
- 1291
- 1292 next_sample += (current_sample * coeff1) +
- 1293 (previous_sample * coeff2);
- 1294 next_sample = av_clip_int16(next_sample >> 8);
- 1295
- 1296 previous_sample = current_sample;
- 1297 current_sample = next_sample;
- 1298 *samplesC++ = current_sample;
- 1299 }
- 1300 }
- 1301 }
- 1302 if (!count) {
- 1303 count = count1;
- 1304 } else if (count != count1) {
- 1305 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
- 1306 count = FFMAX(count, count1);
- 1307 }
- 1308
- 1309 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
- 1310 c->status[channel].predictor = current_sample;
- 1311 c->status[channel].prev_sample = previous_sample;
- 1312 }
- 1313 }
- 1314
- 1315 frame->nb_samples = count * 28;
- 1316 bytestream2_seek(&gb, 0, SEEK_END);
- 1317 break;
- 1318 }
- 1319 case AV_CODEC_ID_ADPCM_EA_XAS:
- 1320 for (channel=0; channel<avctx->channels; channel++) {
- 1321 int coeff[2][4], shift[4];
- 1322 int16_t *s = samples_p[channel];
- 1323 for (n = 0; n < 4; n++, s += 32) {
- 1324 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1325 for (i=0; i<2; i++)
- 1326 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
- 1327 s[0] = val & ~0x0F;
- 1328
- 1329 val = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1330 shift[n] = 20 - (val & 0x0F);
- 1331 s[1] = val & ~0x0F;
- 1332 }
- 1333
- 1334 for (m=2; m<32; m+=2) {
- 1335 s = &samples_p[channel][m];
- 1336 for (n = 0; n < 4; n++, s += 32) {
- 1337 int level, pred;
- 1338 int byte = bytestream2_get_byteu(&gb);
- 1339
- 1340 level = sign_extend(byte >> 4, 4) << shift[n];
- 1341 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
- 1342 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
- 1343
- 1344 level = sign_extend(byte, 4) << shift[n];
- 1345 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
- 1346 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
- 1347 }
- 1348 }
- 1349 }
- 1350 break;
- 1351 case AV_CODEC_ID_ADPCM_IMA_AMV:
- 1352 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
- 1353 c->status[0].step_index = bytestream2_get_byteu(&gb);
- 1354 bytestream2_skipu(&gb, 5);
- 1355 if (c->status[0].step_index > 88u) {
- 1356 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
- 1357 c->status[0].step_index);
- 1358 return AVERROR_INVALIDDATA;
- 1359 }
- 1360
- 1361 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1362 int v = bytestream2_get_byteu(&gb);
- 1363
- 1364 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
- 1365 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
- 1366 }
- 1367 break;
- 1368 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
- 1369 for (i = 0; i < avctx->channels; i++) {
- 1370 c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
- 1371 c->status[i].step_index = bytestream2_get_byteu(&gb);
- 1372 bytestream2_skipu(&gb, 1);
- 1373 if (c->status[i].step_index > 88u) {
- 1374 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
- 1375 c->status[i].step_index);
- 1376 return AVERROR_INVALIDDATA;
- 1377 }
- 1378 }
- 1379
- 1380 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1381 int v = bytestream2_get_byteu(&gb);
- 1382
- 1383 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
- 1384 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
- 1385 }
- 1386 break;
- 1387 case AV_CODEC_ID_ADPCM_CT:
- 1388 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1389 int v = bytestream2_get_byteu(&gb);
- 1390 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
- 1391 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
- 1392 }
- 1393 break;
- 1394 case AV_CODEC_ID_ADPCM_SBPRO_4:
- 1395 case AV_CODEC_ID_ADPCM_SBPRO_3:
- 1396 case AV_CODEC_ID_ADPCM_SBPRO_2:
- 1397 if (!c->status[0].step_index) {
- 1398 /* the first byte is a raw sample */
- 1399 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
- 1400 if (st)
- 1401 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
- 1402 c->status[0].step_index = 1;
- 1403 nb_samples--;
- 1404 }
- 1405 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
- 1406 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1407 int byte = bytestream2_get_byteu(&gb);
- 1408 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1409 byte >> 4, 4, 0);
- 1410 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
- 1411 byte & 0x0F, 4, 0);
- 1412 }
- 1413 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
- 1414 for (n = (nb_samples<<st) / 3; n > 0; n--) {
- 1415 int byte = bytestream2_get_byteu(&gb);
- 1416 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1417 byte >> 5 , 3, 0);
- 1418 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1419 (byte >> 2) & 0x07, 3, 0);
- 1420 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1421 byte & 0x03, 2, 0);
- 1422 }
- 1423 } else {
- 1424 for (n = nb_samples >> (2 - st); n > 0; n--) {
- 1425 int byte = bytestream2_get_byteu(&gb);
- 1426 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1427 byte >> 6 , 2, 2);
- 1428 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
- 1429 (byte >> 4) & 0x03, 2, 2);
- 1430 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
- 1431 (byte >> 2) & 0x03, 2, 2);
- 1432 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
- 1433 byte & 0x03, 2, 2);
- 1434 }
- 1435 }
- 1436 break;
- 1437 case AV_CODEC_ID_ADPCM_SWF:
- 1438 adpcm_swf_decode(avctx, buf, buf_size, samples);
- 1439 bytestream2_seek(&gb, 0, SEEK_END);
- 1440 break;
- 1441 case AV_CODEC_ID_ADPCM_YAMAHA:
- 1442 for (n = nb_samples >> (1 - st); n > 0; n--) {
- 1443 int v = bytestream2_get_byteu(&gb);
- 1444 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
- 1445 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
- 1446 }
- 1447 break;
- 1448 case AV_CODEC_ID_ADPCM_AICA:
- 1449 if (!c->has_status) {
- 1450 for (channel = 0; channel < avctx->channels; channel++)
- 1451 c->status[channel].step = 0;
- 1452 c->has_status = 1;
- 1453 }
- 1454 for (channel = 0; channel < avctx->channels; channel++) {
- 1455 samples = samples_p[channel];
- 1456 for (n = nb_samples >> 1; n > 0; n--) {
- 1457 int v = bytestream2_get_byteu(&gb);
- 1458 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
- 1459 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
- 1460 }
- 1461 }
- 1462 break;
- 1463 case AV_CODEC_ID_ADPCM_AFC:
- 1464 {
- 1465 int samples_per_block;
- 1466 int blocks;
- 1467
- 1468 if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
- 1469 samples_per_block = avctx->extradata[0] / 16;
- 1470 blocks = nb_samples / avctx->extradata[0];
- 1471 } else {
- 1472 samples_per_block = nb_samples / 16;
- 1473 blocks = 1;
- 1474 }
- 1475
- 1476 for (m = 0; m < blocks; m++) {
- 1477 for (channel = 0; channel < avctx->channels; channel++) {
- 1478 int prev1 = c->status[channel].sample1;
- 1479 int prev2 = c->status[channel].sample2;
- 1480
- 1481 samples = samples_p[channel] + m * 16;
- 1482 /* Read in every sample for this channel. */
- 1483 for (i = 0; i < samples_per_block; i++) {
- 1484 int byte = bytestream2_get_byteu(&gb);
- 1485 int scale = 1 << (byte >> 4);
- 1486 int index = byte & 0xf;
- 1487 int factor1 = ff_adpcm_afc_coeffs[0][index];
- 1488 int factor2 = ff_adpcm_afc_coeffs[1][index];
- 1489
- 1490 /* Decode 16 samples. */
- 1491 for (n = 0; n < 16; n++) {
- 1492 int32_t sampledat;
- 1493
- 1494 if (n & 1) {
- 1495 sampledat = sign_extend(byte, 4);
- 1496 } else {
- 1497 byte = bytestream2_get_byteu(&gb);
- 1498 sampledat = sign_extend(byte >> 4, 4);
- 1499 }
- 1500
- 1501 sampledat = ((prev1 * factor1 + prev2 * factor2) +
- 1502 ((sampledat * scale) << 11)) >> 11;
- 1503 *samples = av_clip_int16(sampledat);
- 1504 prev2 = prev1;
- 1505 prev1 = *samples++;
- 1506 }
- 1507 }
- 1508
- 1509 c->status[channel].sample1 = prev1;
- 1510 c->status[channel].sample2 = prev2;
- 1511 }
- 1512 }
- 1513 bytestream2_seek(&gb, 0, SEEK_END);
- 1514 break;
- 1515 }
- 1516 case AV_CODEC_ID_ADPCM_THP:
- 1517 case AV_CODEC_ID_ADPCM_THP_LE:
- 1518 {
- 1519 int table[14][16];
- 1520 int ch;
- 1521
- 1522 #define THP_GET16(g) \
- 1523 sign_extend( \
- 1524 avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
- 1525 bytestream2_get_le16u(&(g)) : \
- 1526 bytestream2_get_be16u(&(g)), 16)
- 1527
- 1528 if (avctx->extradata) {
- 1529 GetByteContext tb;
- 1530 if (avctx->extradata_size < 32 * avctx->channels) {
- 1531 av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
- 1532 return AVERROR_INVALIDDATA;
- 1533 }
- 1534
- 1535 bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
- 1536 for (i = 0; i < avctx->channels; i++)
- 1537 for (n = 0; n < 16; n++)
- 1538 table[i][n] = THP_GET16(tb);
- 1539 } else {
- 1540 for (i = 0; i < avctx->channels; i++)
- 1541 for (n = 0; n < 16; n++)
- 1542 table[i][n] = THP_GET16(gb);
- 1543
- 1544 if (!c->has_status) {
- 1545 /* Initialize the previous sample. */
- 1546 for (i = 0; i < avctx->channels; i++) {
- 1547 c->status[i].sample1 = THP_GET16(gb);
- 1548 c->status[i].sample2 = THP_GET16(gb);
- 1549 }
- 1550 c->has_status = 1;
- 1551 } else {
- 1552 bytestream2_skip(&gb, avctx->channels * 4);
- 1553 }
- 1554 }
- 1555
- 1556 for (ch = 0; ch < avctx->channels; ch++) {
- 1557 samples = samples_p[ch];
- 1558
- 1559 /* Read in every sample for this channel. */
- 1560 for (i = 0; i < (nb_samples + 13) / 14; i++) {
- 1561 int byte = bytestream2_get_byteu(&gb);
- 1562 int index = (byte >> 4) & 7;
- 1563 unsigned int exp = byte & 0x0F;
- 1564 int factor1 = table[ch][index * 2];
- 1565 int factor2 = table[ch][index * 2 + 1];
- 1566
- 1567 /* Decode 14 samples. */
- 1568 for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
- 1569 int32_t sampledat;
- 1570
- 1571 if (n & 1) {
- 1572 sampledat = sign_extend(byte, 4);
- 1573 } else {
- 1574 byte = bytestream2_get_byteu(&gb);
- 1575 sampledat = sign_extend(byte >> 4, 4);
- 1576 }
- 1577
- 1578 sampledat = ((c->status[ch].sample1 * factor1
- 1579 + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
- 1580 *samples = av_clip_int16(sampledat);
- 1581 c->status[ch].sample2 = c->status[ch].sample1;
- 1582 c->status[ch].sample1 = *samples++;
- 1583 }
- 1584 }
- 1585 }
- 1586 break;
- 1587 }
- 1588 case AV_CODEC_ID_ADPCM_DTK:
- 1589 for (channel = 0; channel < avctx->channels; channel++) {
- 1590 samples = samples_p[channel];
- 1591
- 1592 /* Read in every sample for this channel. */
- 1593 for (i = 0; i < nb_samples / 28; i++) {
- 1594 int byte, header;
- 1595 if (channel)
- 1596 bytestream2_skipu(&gb, 1);
- 1597 header = bytestream2_get_byteu(&gb);
- 1598 bytestream2_skipu(&gb, 3 - channel);
- 1599
- 1600 /* Decode 28 samples. */
- 1601 for (n = 0; n < 28; n++) {
- 1602 int32_t sampledat, prev;
- 1603
- 1604 switch (header >> 4) {
- 1605 case 1:
- 1606 prev = (c->status[channel].sample1 * 0x3c);
- 1607 break;
- 1608 case 2:
- 1609 prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
- 1610 break;
- 1611 case 3:
- 1612 prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
- 1613 break;
- 1614 default:
- 1615 prev = 0;
- 1616 }
- 1617
- 1618 prev = av_clip_intp2((prev + 0x20) >> 6, 21);
- 1619
- 1620 byte = bytestream2_get_byteu(&gb);
- 1621 if (!channel)
- 1622 sampledat = sign_extend(byte, 4);
- 1623 else
- 1624 sampledat = sign_extend(byte >> 4, 4);
- 1625
- 1626 sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
- 1627 *samples++ = av_clip_int16(sampledat >> 6);
- 1628 c->status[channel].sample2 = c->status[channel].sample1;
- 1629 c->status[channel].sample1 = sampledat;
- 1630 }
- 1631 }
- 1632 if (!channel)
- 1633 bytestream2_seek(&gb, 0, SEEK_SET);
- 1634 }
- 1635 break;
- 1636 case AV_CODEC_ID_ADPCM_PSX:
- 1637 for (channel = 0; channel < avctx->channels; channel++) {
- 1638 samples = samples_p[channel];
- 1639
- 1640 /* Read in every sample for this channel. */
- 1641 for (i = 0; i < nb_samples / 28; i++) {
- 1642 int filter, shift, flag, byte;
- 1643
- 1644 filter = bytestream2_get_byteu(&gb);
- 1645 shift = filter & 0xf;
- 1646 filter = filter >> 4;
- 1647 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
- 1648 return AVERROR_INVALIDDATA;
- 1649 flag = bytestream2_get_byteu(&gb);
- 1650
- 1651 /* Decode 28 samples. */
- 1652 for (n = 0; n < 28; n++) {
- 1653 int sample = 0, scale;
- 1654
- 1655 if (flag < 0x07) {
- 1656 if (n & 1) {
- 1657 scale = sign_extend(byte >> 4, 4);
- 1658 } else {
- 1659 byte = bytestream2_get_byteu(&gb);
- 1660 scale = sign_extend(byte, 4);
- 1661 }
- 1662
- 1663 scale = scale << 12;
- 1664 sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
- 1665 }
- 1666 *samples++ = av_clip_int16(sample);
- 1667 c->status[channel].sample2 = c->status[channel].sample1;
- 1668 c->status[channel].sample1 = sample;
- 1669 }
- 1670 }
- 1671 }
- 1672 break;
- 1673
- 1674 default:
- 1675 return -1;
- 1676 }
- 1677
- 1678 if (avpkt->size && bytestream2_tell(&gb) == 0) {
- 1679 av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
- 1680 return AVERROR_INVALIDDATA;
- 1681 }
- 1682
- 1683 *got_frame_ptr = 1;
- 1684
- 1685 if (avpkt->size < bytestream2_tell(&gb)) {
- 1686 av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
- 1687 return avpkt->size;
- 1688 }
- 1689
- 1690 return bytestream2_tell(&gb);
- 1691 }
- 1692
- 1693 static void adpcm_flush(AVCodecContext *avctx)
- 1694 {
- 1695 ADPCMDecodeContext *c = avctx->priv_data;
- 1696 c->has_status = 0;
- 1697 }
- 1698
- 1699
- 1700 static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
- 1701 AV_SAMPLE_FMT_NONE };
- 1702 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
- 1703 AV_SAMPLE_FMT_NONE };
- 1704 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
- 1705 AV_SAMPLE_FMT_S16P,
- 1706 AV_SAMPLE_FMT_NONE };
- 1707
- 1708 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
- 1709 AVCodec ff_ ## name_ ## _decoder = { \
- 1710 .name = #name_, \
- 1711 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
- 1712 .type = AVMEDIA_TYPE_AUDIO, \
- 1713 .id = id_, \
- 1714 .priv_data_size = sizeof(ADPCMDecodeContext), \
- 1715 .init = adpcm_decode_init, \
- 1716 .decode = adpcm_decode_frame, \
- 1717 .flush = adpcm_flush, \
- 1718 .capabilities = AV_CODEC_CAP_DR1, \
- 1719 .sample_fmts = sample_fmts_, \
- 1720 }
- 1721
- 1722 /* Note: Do not forget to add new entries to the Makefile as well. */
- 1723 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
- 1724 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
- 1725 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA");
- 1726 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
- 1727 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
- 1728 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
- 1729 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
- 1730 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
- 1731 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
- 1732 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
- 1733 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
- 1734 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
- 1735 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
- 1736 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4");
- 1737 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
- 1738 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
- 1739 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
- 1740 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
- 1741 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
- 1742 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
- 1743 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
- 1744 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
- 1745 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
- 1746 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
- 1747 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
- 1748 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
- 1749 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF");
- 1750 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation");
- 1751 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
- 1752 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
- 1753 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
- 1754 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
- 1755 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
- 1756 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
- 1757 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
- 1758 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");