导入模块
import pandas as pd
from pyecharts. charts import *
from pyecharts import options as opts
from pyecharts. commons. utils import JsCode
from pyecharts. globals import ThemeType
代码
# 导入数据
data = pd. read_excel ( '2021年世界五百强排行榜.xlsx' )
data. head ( 5 )
# 统计世界500 强企业各个国家之间的占比
pie = Pie ( init_opts= opts. InitOpts ( theme= 'light' ,
width= '800px' ,
height= '700px' ) )
data_x = data1[ '国家' ] . tolist ( )
data_y = data1[ '排名' ] . tolist ( )
pie. add ( "" ,
[ list ( z) for z in zip ( data_x, data_y) ] ,
radius= [ "35%" , "55%" ]
)
pie. set_series_opts ( label_opts= opts. LabelOpts ( position= "insideLeft" ,
font_size= 12 ,
color= 'rgba(0,0,0,0.5)' ,
font_weight= 'bold' ,
formatter= '{b}:{d}%' ) ,
itemstyle_opts= { 'normal' : {
'opacity' : 1 , # 透明度
'shadowColor' : 'rgba(0, 0, 0, 0.2)' , # 阴影颜色
'shadowBlur' : 5 , # 阴影大小
'shadowOffsetY' : 5 , # Y轴方向阴影偏移
'shadowOffsetX' : 5 , # x轴方向阴影偏移
}
}
)
pie. set_global_opts ( legend_opts= opts. LegendOpts ( is_show= True, pos_left= 'right' , pos_top= 'center' , orient= 'vertical' ) ,
title_opts= opts. TitleOpts ( title= "https://files.jxasp.com/image/2021年世界各国500强企业占比" , pos_top= 'center' , pos_left= 'center' ,
title_textstyle_opts= opts. TextStyleOpts ( font_size= 16 ) ) ,
visualmap_opts= opts. VisualMapOpts (
min_= 0 ,
max_= 200 ,
) )
pie. render_notebook ( )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
将国家列设置为索引
bar = Bar ( init_opts= opts. InitOpts ( theme= ThemeType. PURPLE_PASSION) )
bar. add_yaxis ( "世界500强企业数量" , data1[ '排名' ] . tolist ( ) )
bar. set_global_opts ( title_opts= opts. TitleOpts ( title= "每日电量统计表" ) , toolbox_opts= opts. ToolboxOpts ( ) , xaxis_opts= opts. AxisOpts ( name_rotate= 60 , axislabel_opts= { "rotate" : 45 } ) )
bar. render_notebook ( )
# 绘制直方图来显示
# 线性渐变
color_js = "" "new echarts. graphic. LinearGradient ( 0 , 1 , 0 , 0 ,
[ { offset: 0 , color: '#008B8B' } , { offset: 1 , color: '#FF6347' } ] , false) "" "
bar = Bar ( init_opts= opts. InitOpts ( theme= ThemeType. DARK) )
bar. add_xaxis ( data1. index. tolist ( ) )
bar. add_yaxis ( "世界500强企业数量" , data1[ '排名' ] . tolist ( ) , itemstyle_opts= opts. ItemStyleOpts ( color= JsCode ( color_js) ) )
bar. set_global_opts ( title_opts= opts. TitleOpts ( title= "https://files.jxasp.com/image/2021年各国世界500强企业统计" , subtitle= '' , pos_left= 'center' , pos_top= '3%' ) ,
toolbox_opts= opts. ToolboxOpts ( ) ,
xaxis_opts= opts. AxisOpts ( name_rotate= 60 , axislabel_opts= { "rotate" : 45 } ) ,
legend_opts= opts. LegendOpts ( is_show= True,
pos_left= '80%' ,
pos_bottom= '90%' ) )
bar. render_notebook ( )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
筛选出中国的世界500强企业并进行数据可视化分析`在这里插入代码片
# m _df = df. groupby ( [ '行业' ] ) [ '存活天数' ] . mean ( ) . reset_index ( )
data2. sort_values ( by= '排名' , ascending= False, inplace= True)
data_x = data2[ '字段2' ] . tolist ( )
data_y = data2[ '排名' ] . tolist ( )
bar = Bar ( init_opts= opts. InitOpts ( theme= 'light' ,
width= '1000px' ,
height= '900px' ) )
bar. add_xaxis ( data_x)
bar. add_yaxis ( '平均存活天数' , [ int ( i) for i in data_y] )
bar. set_series_opts ( label_opts= opts. LabelOpts ( position= "insideLeft" ,
font_size= 12 ,
font_weight= 'bold' ,
formatter= '{b}:{c}' ) )
bar. set_global_opts ( title_opts= opts. TitleOpts ( title= "https://files.jxasp.com/image/2021年中国世界500强企业城市分布" , pos_top= '2%' , pos_left= 'center' ,
title_textstyle_opts= opts. TextStyleOpts ( font_size= 16 ) ) ,
legend_opts= opts. LegendOpts ( is_show= False) ,
xaxis_opts= opts. AxisOpts ( is_show= False, is_scale= True) ,
yaxis_opts= opts. AxisOpts ( is_show= False) ,
visualmap_opts= opts. VisualMapOpts (
max_= 3000 ,
min_= 1500 ,
is_piecewise= False,
dimension= 0 ,
range_color= [ 'rgba(238,25,38,1)' , 'rgba(289,112,147,0.4)' ] )
)
bar. reversal_axis ( )
bar. render_notebook ( )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29