关键词搜索

源码搜索 ×
×

Python数据分析入门:数据合并(基础必备)

发布2022-04-17浏览2061次

详情内容

数据合并(pd.merge)

  • 根据单个或多个键将不同DataFrame的行连接起来
  • 类似数据库的连接操作
  • pd.merge:(left, right, how=‘inner’,on=None,left_on=None,
    right_on=None ) left:合并时左边的DataFrame right:合并时右边的DataFrame
    how:合并的方式,默认’inner’, ‘outer’, ‘left’, ‘right’ on:需要合并的列名,必须两边都有的列名,并以
    left 和 right 中的列名的交集作为连接键 left_on: left Dataframe中用作连接键的列 right_on:
    right Dataframe中用作连接键的列
  • 内连接 inner:对两张表都有的键的交集进行联合

在这里插入图片描述

  • 全连接 outer:对两者表的都有的键的并集进行联合

在这里插入图片描述

  • 左连接 left:对所有左表的键进行联合

在这里插入图片描述

  • 右连接 right:对所有右表的键进行联合

在这里插入图片描述
示例代码:

import pandas as pd
import numpy as np
 
left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                       'B': ['B0', 'B1', 'B2', 'B3']})
 
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
 
pd.merge(left,right,on='key') #指定连接键key
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

运行结果:

key    A    B    C    D
0    K0    A0    B0    C0    D0
1    K1    A1    B1    C1    D1
2    K2    A2    B2    C2    D2
3    K3    A3    B3    C3    D3
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述示例代码:

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
 
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
 
pd.merge(left,right,on=['key1','key2']) #指定多个键,进行合并
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

运行结果:

    key1    key2    A    B    C    D
0    K0    K0    A0    B0    C0    D0
1    K1    K0    A2    B2    C1    D1
2    K1    K0    A2    B2    C2    D2
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

#指定左连接
 
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
 
pd.merge(left, right, how='left', on=['key1', 'key2'])
    key1    key2          A    B    C    D
0    K0        K0        A0    B0    C0    D0
1    K0        K1        A1    B1    NaN    NaN
2    K1        K0        A2    B2    C1    D1
3    K1        K0        A2    B2    C2    D2
4    K2        K1        A3    B3    NaN    NaN
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

在这里插入图片描述

#指定右连接
 
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(left, right, how='right', on=['key1', 'key2'])
    key1    key2          A    B    C    D
0    K0        K0        A0    B0    C0    D0
1    K1        K0        A2    B2    C1    D1
2    K1        K0        A2    B2    C2    D2
3    K2        K0        NaN    NaN    C3    D3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

在这里插入图片描述
默认是“内连接”(inner),即结果中的键是交集

how指定连接方式

“外连接”(outer),结果中的键是并集

示例代码:

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(left,right,how='outer',on=['key1','key2'])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

运行结果:

key1    key2    A    B    C    D
0    K0    K0    A0    B0    C0    D0
1    K0    K1    A1    B1    NaN    NaN
2    K1    K0    A2    B2    C1    D1
3    K1    K0    A2    B2    C2    D2
4    K2    K1    A3    B3    NaN    NaN
5    K2    K0    NaN    NaN    C3    D3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述
处理重复列名

参数suffixes:默认为_x, _y

示例代码:

# 处理重复列名
df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                        'data' : np.random.randint(0,10,7)})
df_obj2 = pd.DataFrame({'key': ['a', 'b', 'd'],
                        'data' : np.random.randint(0,10,3)})
 
print(pd.merge(df_obj1, df_obj2, on='key', suffixes=('_left', '_right')))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

运行结果:

   data_left key  data_right
0          9   b           1
1          5   b           1
2          1   b           1
3          2   a           8
4          2   a           8
5          5   a           8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

按索引连接

参数left_index=True或right_index=True

示例代码:

# 按索引连接
df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                        'data1' : np.random.randint(0,10,7)})
df_obj2 = pd.DataFrame({'data2' : np.random.randint(0,10,3)}, index=['a', 'b', 'd'])
 
print(pd.merge(df_obj1, df_obj2, left_on='key', right_index=True))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

运行结果:

   data1 key  data2
0      3   b      6
1      4   b      6
6      8   b      6
2      6   a      0
4      3   a      0
5      0   a      0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

数据合并(pd.concat)

沿轴方向将多个对象合并到一起

1. NumPy的concat
np.concatenate

示例代码:

import numpy as np
import pandas as pd
 
arr1 = np.random.randint(0, 10, (3, 4))
arr2 = np.random.randint(0, 10, (3, 4))
 
print(arr1)
print(arr2)
 
print(np.concatenate([arr1, arr2]))
print(np.concatenate([arr1, arr2], axis=1))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

运行结果:

# print(arr1)
[[3 3 0 8]
 [2 0 3 1]
 [4 8 8 2]]
 
# print(arr2)
[[6 8 7 3]
 [1 6 8 7]
 [1 4 7 1]]
 
# print(np.concatenate([arr1, arr2]))
 [[3 3 0 8]
 [2 0 3 1]
 [4 8 8 2]
 [6 8 7 3]
 [1 6 8 7]
 [1 4 7 1]]
 
# print(np.concatenate([arr1, arr2], axis=1)) 
[[3 3 0 8 6 8 7 3]
 [2 0 3 1 1 6 8 7]
 [4 8 8 2 1 4 7 1]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

2. pd.concat

  • 注意指定轴方向,默认axis=0
  • join指定合并方式,默认为outer
  • Series合并时查看行索引有无重复
df1 = pd.DataFrame(np.arange(6).reshape(3,2),index=list('abc'),columns=['one','two'])
 
df2 = pd.DataFrame(np.arange(4).reshape(2,2)+5,index=list('ac'),columns=['three','four'])
 
pd.concat([df1,df2]) #默认外连接,axis=0
    four    one    three    two
a    NaN        0.0    NaN        1.0
b    NaN        2.0    NaN        3.0
c    NaN        4.0    NaN        5.0
a    6.0        NaN    5.0        NaN
c    8.0        NaN    7.0        NaN
 
pd.concat([df1,df2],axis='columns') #指定axis=1连接
    one    two    three    four
a    0    1    5.0        6.0
b    2    3    NaN        NaN
c    4    5    7.0        8.0
 
#同样我们也可以指定连接的方式为inner
pd.concat([df1,df2],axis=1,join='inner')
 
    one    two    three    four
a    0    1    5        6
c    4    5    7        8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

相关技术文章

点击QQ咨询
开通会员
返回顶部
×
微信扫码支付
微信扫码支付
确定支付下载
请使用微信描二维码支付
×

提示信息

×

选择支付方式

  • 微信支付
  • 支付宝付款
确定支付下载