前言
利用python教程对照片中人脸进行颜值预测!
所需工具
Python版本:3.5.4(64bit)
相关模块:
opencv_python模块、sklearn模块、numpy模块、dlib模块以及一些Python自带的模块。
环境搭建
(1)安装相应版本的Python并添加到环境变量中;
(2)pip安装相关模块中提到的模块。
例如:
若pip安装报错,请自行到:
http://www.lfd.uci.edu/~gohlke/pythonlibs/
下载pip安装报错模块的whl文件,并使用:
pip install whl文件路径+whl文件名安装。
例如:
(已在相关文件中提供了编译好的用于dlib库安装的whl文件——>因为这个库最不好装)
参考文献链接
【1】xxxPh.D.的博客
http://www.learnopencv.com/computer-vision-for-predicting-facial-attractiveness/
【2】华南理工大学某实验室
http://www.hcii-lab.net/data/SCUT-FBP/EN/introduce.html
主要思路
(1)模型训练
用了PCA算法对特征进行了压缩降维;
然后用随机森林训练模型。
数据源于网络,据说数据“发源地”就是华南理工大学某实验室,因此我在参考文献上才加上了这个实验室的链接。
(2)提取人脸关键点
主要使用了dlib库。
使用官方提供的模型构建特征提取器。
(3)特征生成
完全参考了xxxPh.D.的博客。
(4)颜值预测
利用之前的数据和模型进行颜值预测。
使用方式
有特殊疾病者请慎重尝试预测自己的颜值,本人不对颜值预测的结果和带来的所有负面影响负责!!!
言归正传。
环境搭建完成后,解压相关文件中的Face_Value.rar文件,cmd窗口切换到解压后的*.py文件所在目录。
例如:
打开test_img文件夹,将需要预测颜值的照片放入并重命名为test.jpg。
例如:
若嫌麻烦或者有其他需求,请自行修改:
getLandmarks.py文件中第13行。
最后依次运行:
train_model.py(想直接用我模型的请忽略此步)
- # 模型训练脚本
- import numpy as np
- from sklearn import decomposition
- from sklearn.ensemble import RandomForestRegressor
- from sklearn.externals import joblib
-
-
- # 特征和对应的分数路径
- features_path = './data/features_ALL.txt'
- ratings_path = './data/ratings.txt'
-
- # 载入数据
- # 共500组数据
- # 其中前480组数据作为训练集,后20组数据作为测试集
- features = np.loadtxt(features_path, delimiter=',')
- features_train = features[0: -20]
- features_test = features[-20: ]
- ratings = np.loadtxt(ratings_path, delimiter=',')
- ratings_train = ratings[0: -20]
- ratings_test = ratings[-20: ]
-
- # 训练模型
- # 这里用PCA算法对特征进行了压缩和降维。
- # 降维之后特征变成了20维,也就是说特征一共有500行,每行是一个人的特征向量,每个特征向量有20个元素。
- # 用随机森林训练模型
- pca = decomposition.PCA(n_components=20)
- pca.fit(features_train)
- features_train = pca.transform(features_train)
- features_test = pca.transform(features_test)
- regr = RandomForestRegressor(n_estimators=50, max_depth=None, min_samples_split=10, random_state=0)
- regr = regr.fit(features_train, ratings_train)
- joblib.dump(regr, './model/face_rating.pkl', compress=1)
-
- # 训练完之后提示训练结束
- print('Generate Model Successfully!')
getLandmarks.py
- # 人脸关键点提取脚本
- import cv2
- import dlib
- import numpy
-
-
- # 模型路径
- PREDICTOR_PATH = './model/shape_predictor_68_face_landmarks.dat'
- # 使用dlib自带的frontal_face_detector作为人脸提取器
- detector = dlib.get_frontal_face_detector()
- # 使用官方提供的模型构建特征提取器
- predictor = dlib.shape_predictor(PREDICTOR_PATH)
- face_img = cv2.imread("test_img/test.jpg")
- # 使用detector进行人脸检测,rects为返回的结果
- rects = detector(face_img, 1)
- # 如果检测到人脸
- if len(rects) >= 1:
- print("{} faces detected".format(len(rects)))
- else:
- print('No faces detected')
- exit()
- with open('./results/landmarks.txt', 'w') as f:
- f.truncate()
- for faces in range(len(rects)):
- # 使用predictor进行人脸关键点识别
- landmarks = numpy.matrix([[p.x, p.y] for p in predictor(face_img, rects[faces]).parts()])
- face_img = face_img.copy()
- # 使用enumerate函数遍历序列中的元素以及它们的下标
- for idx, point in enumerate(landmarks):
- pos = (point[0, 0], point[0, 1])
- f.write(str(point[0, 0]))
- f.write(',')
- f.write(str(point[0, 1]))
- f.write(',')
- f.write('\n')
- f.close()
- # 成功后提示
- print('Get landmarks successfully')
getFeatures.py
- # 特征生成脚本
- # 具体原理请参见参考论文
- import math
- import numpy
- import itertools
-
-
- def facialRatio(points):
- x1 = points[0]
- y1 = points[1]
- x2 = points[2]
- y2 = points[3]
- x3 = points[4]
- y3 = points[5]
- x4 = points[6]
- y4 = points[7]
- dist1 = math.sqrt((x1-x2)**2 + (y1-y2)**2)
- dist2 = math.sqrt((x3-x4)**2 + (y3-y4)**2)
- ratio = dist1/dist2
- return ratio
-
-
- def generateFeatures(pointIndices1, pointIndices2, pointIndices3, pointIndices4, allLandmarkCoordinates):
- size = allLandmarkCoordinates.shape
- if len(size) > 1:
- allFeatures = numpy.zeros((size[0], len(pointIndices1)))
- for x in range(0, size[0]):
- landmarkCoordinates = allLandmarkCoordinates[x, :]
- ratios = []
- for i in range(0, len(pointIndices1)):
- x1 = landmarkCoordinates[2*(pointIndices1[i]-1)]
- y1 = landmarkCoordinates[2*pointIndices1[i] - 1]
- x2 = landmarkCoordinates[2*(pointIndices2[i]-1)]
- y2 = landmarkCoordinates[2*pointIndices2[i] - 1]
- x3 = landmarkCoordinates[2*(pointIndices3[i]-1)]
- y3 = landmarkCoordinates[2*pointIndices3[i] - 1]
- x4 = landmarkCoordinates[2*(pointIndices4[i]-1)]
- y4 = landmarkCoordinates[2*pointIndices4[i] - 1]
- points = [x1, y1, x2, y2, x3, y3, x4, y4]
- ratios.append(facialRatio(points))
- allFeatures[x, :] = numpy.asarray(ratios)
- else:
- allFeatures = numpy.zeros((1, len(pointIndices1)))
- landmarkCoordinates = allLandmarkCoordinates
- ratios = []
- for i in range(0, len(pointIndices1)):
- x1 = landmarkCoordinates[2*(pointIndices1[i]-1)]
- y1 = landmarkCoordinates[2*pointIndices1[i] - 1]
- x2 = landmarkCoordinates[2*(pointIndices2[i]-1)]
- y2 = landmarkCoordinates[2*pointIndices2[i] - 1]
- x3 = landmarkCoordinates[2*(pointIndices3[i]-1)]
- y3 = landmarkCoordinates[2*pointIndices3[i] - 1]
- x4 = landmarkCoordinates[2*(pointIndices4[i]-1)]
- y4 = landmarkCoordinates[2*pointIndices4[i] - 1]
- points = [x1, y1, x2, y2, x3, y3, x4, y4]
- ratios.append(facialRatio(points))
- allFeatures[0, :] = numpy.asarray(ratios)
- return allFeatures
-
-
- def generateAllFeatures(allLandmarkCoordinates):
- a = [18, 22, 23, 27, 37, 40, 43, 46, 28, 32, 34, 36, 5, 9, 13, 49, 55, 52, 58]
- combinations = itertools.combinations(a, 4)
- i = 0
- pointIndices1 = []
- pointIndices2 = []
- pointIndices3 = []
- pointIndices4 = []
- for combination in combinations:
- pointIndices1.append(combination[0])
- pointIndices2.append(combination[1])
- pointIndices3.append(combination[2])
- pointIndices4.append(combination[3])
- i = i+1
- pointIndices1.append(combination[0])
- pointIndices2.append(combination[2])
- pointIndices3.append(combination[1])
- pointIndices4.append(combination[3])
- i = i+1
- pointIndices1.append(combination[0])
- pointIndices2.append(combination[3])
- pointIndices3.append(combination[1])
- pointIndices4.append(combination[2])
- i = i+1
- return generateFeatures(pointIndices1, pointIndices2, pointIndices3, pointIndices4, allLandmarkCoordinates)
-
-
- landmarks = numpy.loadtxt("./results/landmarks.txt", delimiter=',', usecols=range(136))
- featuresALL = generateAllFeatures(landmarks)
- numpy.savetxt("./results/my_features.txt", featuresALL, delimiter=',', fmt = '%.04f')
- print("Generate Feature Successfully!")
Predict.py
- # 颜值预测脚本
- from sklearn.externals import joblib
- import numpy as np
- from sklearn import decomposition
-
-
- pre_model = joblib.load('./model/face_rating.pkl')
- features = np.loadtxt('./data/features_ALL.txt', delimiter=',')
- my_features = np.loadtxt('./results/my_features.txt', delimiter=',')
- pca = decomposition.PCA(n_components=20)
- pca.fit(features)
- predictions = []
- if len(my_features.shape) > 1:
- for i in range(len(my_features)):
- feature = my_features[i, :]
- feature_transfer = pca.transform(feature.reshape(1, -1))
- predictions.append(pre_model.predict(feature_transfer))
- print('照片中的人颜值得分依次为(满分为5分):')
- k = 1
- for pre in predictions:
- print('第%d个人:' % k, end='')
- print(str(pre)+'分')
- k += 1
- else:
- feature = my_features
- feature_transfer = pca.transform(feature.reshape(1, -1))
- predictions.append(pre_model.predict(feature_transfer))
- print('照片中的人颜值得分为(满分为5分):')
- k = 1
- for pre in predictions:
- print(str(pre)+'分')
- k += 1
文章到这里就结束了,感谢你的观看,下篇文章预测NBA比赛结果。
为了感谢读者们,我想把我最近收藏的一些编程干货分享给大家,回馈每一个读者,希望能帮到你们。